OnlineBusinessBureau.com
We are not the Better Business Bureau. We're better!
 
   About Us
   Our Ratings
   Look up a Company
   File a Complaint
   Complaint Resolution
     Center
   Resources
   Membership - Join Now!
   Member Login
   Testimonials
   Contact Us

1,847,222 companies
in our database.

Join our weekly
Consumer Fraud
Alert Newsletter



Our members proudly
display this seal!

News Releases

Back

Effects Of the Gastric Bypass ALTERNATIVE® Regimen On Type 1 Diabetes

Authors: Rouzbeh Motiei-Langroudi MD, Don Karl Juravin (inventor), and Marcus K. Free MD

Abstract (research summary)

The Gastric Bypass ALTERNATIVE® (a.k.a #GBA) regimen is an innovative non-surgical weight reduction regimen with 80,000 users experience in 8 years. The results to date show that successful users are reporting weight reduction at a rate of 2 to 4 times that of bariatric surgery patients. The regimen is made of:

A unique, sophisticated weight analysis to reflect the causes of obesity for each individual
A custom prepared Anti-Cravings, Gastric Bypass EFFECT, reinforcement pills, stress & sleep pills, night pills  
A strict boot camp (Facebook.com/groups/LOST100) with 22,000 people managed by Don Karl Juravin
Medical oversight by Dr. Marcus K. Free

This research paper discusses the effects of the components of the Gastric Bypass ALTERNATIVE® regimen on diabetes, insulin release, and weight loss.

Active Ingredients

The active ingredients in the Gastric Bypass ALTERNATIVE (a.k.a GBA) regimen are: Beta Glucan, Camellia Sinensis, Chromium, Fibersol, Green Coffee Bean Extract, Guar Gum, Higenamine Hydrochloric Acid, Inulin, Konjac, Magnesium Stearate, Naringin, Raspberry Ketones, Silicon Dioxide, Theobromine, Vitamin B6, Vitamin B12, Vitamin D, Willow, Xanthan, and Yohimbine. Here, we review the existing research articles regarding the effects of each ingredient on type 1 or insulin-dependent diabetes.

Beta Glucan

Beta glucan decreases blood glucose without inducing hypoglycemia in type 1 diabetics.

Beta glucan consumption before bedtime decreases blood glucose during early night hours in type 1 diabetic children without inducing nocturnal hypoglycemia (Rami 2001).
Beta glucan protects against type 1 diabetes in mice through induction of innate immune response and modulation of T cell response to pancreatic beta cells (Karumuthil-Melethil 2014, Kida 1992).

Chromium

Chromium blood level is lower in type 1 diabetics, especially in patients with poor glycemic control, while chromium intake (200 microg 3 times daily) improves outcome.

Chromium is involved in insulin signal transduction, insulin and glucose metabolism and cellular antioxidative defense (Lin 2015, Anderson 2000).
Chromium blood level is lower in type 1 diabetics, especially in patients with poor glycemic control (Gluschenko 2016, Lin 2015, Karagun 2012).
Suboptimal chromium intake increases the risk of diabetes as chromium intake improves glucose intolerance in type 1 diabetes (Anderson 2000).
Chromium picolinate (200 microg 3 times daily for 3 months) decreases HbA1c in type 1 diabetes (Fox 1998).
Chromium (200μg) increases insulin sensitivity in individuals with type 1 diabetes and also permits reductions in dosages of insulin after just 10 days (Chen 1997).

Guar Gum

Guar gum (30 g daily) decreases fasting and postprandial blood glucose (by 19%), hemoglobin A1c (HbA1c, by 0.8) and low-density-lipoprotein (LDL) cholesterol (by 20%) in type 1 diabetics.

Guar gum (4 times per day for 6 weeks) decreases fasting blood glucose, hemoglobin A1c (HbA1c) and low-density-lipoprotein (LDL) cholesterol (by 20%) in type 1 diabetics, shown in a randomized double-blind study (Vuorinen-Markkola 1992).
Guar gum (4 times per day for 4 weeks) decreases blood glucose levels after breakfast and lunch, daily insulin requirements and serum total cholesterol (by 21%) in type 1 diabetics, shown in a randomized double-blind study (Ebeling 1988).
Guar gum (29 g daily for 1 month) decreases postprandial blood glucose (by 19%) and HbA1 (by 0.8) in type 1 diabetics (Vaaler 1986).
Guar gum (5% of daily carbohydrate intake to a maximum of 30 g daily for 3 weeks) decreases HbA1c, glucosuria and serum total cholesterol in type 1 diabetic children (Paganus 1987).

Naringin

Animal studies show that Naringin does not reduce blood glucose levels in type 1 diabetics, but improves atherogenesis and is helpful in preventing diabetic ketoacidosis.

Naringin ameliorates cardiac hypertrophy in type 1 diabetic mice by inhibiting oxidative stress (Adebiyi 2016).
Naringin improves plasma insulin, hepatic glycogen content, blood acidity and ketone bodies but not fasting blood glucose in type 1 diabetic mice. In other words, although Naringin is not hypoglycemic, it ameliorates ketoacidosis and complications of diabetic ketoacidosis (Murunga 2016).
Naringin is not hypoglycemic in type 1 diabetic rats, but it improves atherogenic index as it decreases total cholesterol and triglycerides and increases high-density lipoproteins (HDL) (Xulu 2012).

Vitamin B6

Vitamin B6 metabolism is altered in type 1 diabetes and its deficiency may contribute to type I diabetes onset. Conversely, vitamin B6 (100mg daily) normalizes endothelial dysfunction in type 1 diabetes.

Vitamin B6 deficiency results in deficient formation of derivatives (like pyridoxal 5′-phosphate) necessary for pancreatic islet function and the lack of the derivative may contribute to the appearance of pancreatic islet autoimmunity and type I diabetes onset (Rubi 2012).
Vitamin B6 (100mg daily) normalize endothelial dysfunction in type 1 diabetic children, with the effect maintaining over 8 weeks (MacKenzie 2006).
Vitamin B6 metabolism is altered in type 1 diabetes, resulting in its deficiency and diabetic complications (Masse 2012, Kodentsova 1994).

Vitamin B12

Some type 1 diabetic patients will develop Vitamin B12 deficiency anemia, obligating Vitamin B12 supplementation.

As type 1 diabetes is an autoimmune disease, there is an increased risk of other autoimmune disorders including pernicious anemia, a type of Vitamin B12-deficient anemia needing lifelong supplementation with Vitamin B12 (De Block 2008, Perros 2000, Davis 1992).

Vitamin D

Vitamin D (500 to 4000 IU daily) decreases type 1 diabetes risk by regulating immune system and calcium homeostasis and its direct effect on beta cells.

Vitamin D deficiency increases the incidence of type 1 diabetes. Conversely, early and long-term vitamin D supplementation decreases diabetes risk by regulating immune system and calcium homeostasis and its direct effect on beta cells that renders them more resistant to cellular stress (Griz 2014, Badenhoop 2012, Wolden-Kirk 2011, Hypponen 2010, Luong 2005, Mathieu 2005a, Mathieu 2005b).
High dose Vitamin D (50 microg or 2000 IU daily) but not low dose (10 microg or 400 IU daily) have a strong protective effect on type 1 diabetes (Harris 2005, Harris 2002).
Vitamin D supplementation during early life (infancy) decreases type 1 diabetes risk during later life by 29% (Dong 2013, Zipitis 2008).
Below normal vitamin D levels are observed in 71% of type 1 diabetic individuals. Moreover, insulin requirement is higher in type 1 diabetics with decreased serum vitamin D levels (Thnc 2011, Holick 2005).
Higher vitamin D levels are associated with lower HbA1c levels in type 1 diabetics (Al Sawah 2016).
Vitamin D supplementation (4000 IU daily) improves HbA1c after 12 weeks in vitamin D-deficient type 1 diabetics (Aljabri 2010).
Vitamin D deficiency predisposes to type 1 diabetes, while Vitamin D supplementation (500 IU to 1000 IU daily) prevent the disease (Mathieu 2015).
Vitamin D supplementation influences immune regulation and subsequently may prevent progression to type 1 diabetes in genetically susceptible individuals (Harinarayan 2014).

References

Adebiyi, A., Adebiyi, O., Owira, P. (2016). Naringin Mitigates Cardiac Hypertrophy by Reducing Oxidative Stress and Inactivating c-Jun Nuclear Kinase-1 Protein in Type I Diabetes. Journal of Cardiovascular Pharmacology [online], 67 (2), pp. 136-44. Available from: https://www.ncbi.nlm.nih.gov/pubmed/26421421 [Accessed 06.01.2017].
Aljabri, K., Bokhari, S., Khan, M. (2010). Glycemic changes after vitamin D supplementation in patients with type 1 diabetes mellitus and vitamin D deficiency. Annals of Saudi Medicine [online], 30 (6), pp. 454-8. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2994161/ [Accessed 04.01.2017].
Al Sawah, S., Compher, C., Hanlon, A., et al. (2016). 25-Hydroxyvitamin D and glycemic control: A cross-sectional study of children and adolescents with type 1 diabetes. Diabetes Research and Clinical Practice [online], 115, pp. 54-9. Available from: https://www.ncbi.nlm.nih.gov/pubmed/27242123 [Accessed 05.01.2017].
Anderson, R. (2000). Chromium in the prevention and control of diabetes. Diabetes and Metabolism [online], 26 (1), pp. 22-7. Available from: http://www.em-consulte.com/article/79857/alertePM [Accessed 28.12.2016].
Badenhoop, K., Kahles, H., Penna-Martinez, M. (2012). Vitamin D, immune tolerance, and prevention of type 1 diabetes. Current Diabetes Reports [online], 12 (6), pp. 635-42. Available from: https://www.ncbi.nlm.nih.gov/pubmed/22976537 [Accessed 05.01.2017].
Chen, S., Sun, Y., Chen, X. (1997). Effect of jiangtangkang on blood glucose, sensitivity of insulin and blood viscosity in non-insulin dependent diabetes mellitus [in Chinese]. Zhongguo Zhong Xi Yi Jie He Za Zhi, 17, pp. 666–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10322847 [Accessed 02.06.2016].
Davis, R., McCann, V., Stanton, K. (1992). Type 1 diabetes and latent pernicious anaemia. The Medical Journal of Australia [online], 156 (3), pp. 160-2. Available from: https://www.ncbi.nlm.nih.gov/pubmed/1545717 [Accessed 28.12.2016].
De Block, C., De Leeuw, I., Van Gaal, L. (2008). Autoimmune gastritis in type 1 diabetes: a clinically oriented review. Journal of Clinical Endocrinology and Metabolism [online], 93 (2), pp. 363-71. Available from: https://www.ncbi.nlm.nih.gov/pubmed/18029461 [Accessed 28.12.2016].
Dong, J., Zhang, W., Chen, J., et al. (2013). Vitamin D intake and risk of type 1 diabetes: a meta-analysis of observational studies. Nutrients [online], 5 (9), pp. 3551-62. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3798920/ [Accessed 05.01.2017].
Ebeling, P., Yki-Järvinen, H., Aro, A., et al. (1988). Glucose and lipid metabolism and insulin sensitivity in type 1 diabetes: the effect of guar gum. American Journal of Clinical Nutrition [online], 48 (1), pp. 98-103. Available from: https://www.ncbi.nlm.nih.gov/pubmed/3291601 [Accessed 27.12.2016].
Fox, G., Sabovic, Z. (1998). Chromium picolinate supplementation for diabetes mellitus. The Journal of Family Practice [online], 46 (1), pp. 83-6. Available from: https://www.ncbi.nlm.nih.gov/pubmed/9451374 [Accessed 28.12.2016].
Gluschenko, N., Vasylyshyn, K., Roschupkin, A., et al. (2016). The content of microelements in blood serum and erythrocytes in children with diabetes mellitus type I depending on level of glycemic control. Georgian Med News [online], 250, pp. 66-71. Available from: https://www.ncbi.nlm.nih.gov/pubmed/26870978 [Accessed 28.12.2016].
Griz, L., Bandeira, F., Gabbay, M., et al. (2014). Vitamin D and diabetes mellitus: an update 2013. Arquivos Brasileiros de Endocrinologia e Metabologia [online], 58 (1), pp. 1-8. Available from: http://www.scielo.br/pdf/abem/v58n1/0004-2730-abem-58-1-0001.pdf [Accessed 05.01.2017].
Harinarayan, C. (2014). Vitamin D and diabetes mellitus. Hormones [online], 13 (2), pp. 163-81. Available from: http://www.hormones.gr/8472/article/article.html [Accessed 04.01.2017].
Harris, S. (2005). Vitamin D in type 1 diabetes prevention. Journal of Nutrition [online], 135 (2), pp. 323-5. Available from: http://jn.nutrition.org/content/135/2/323.long [Accessed 05.01.2017].
Harris, S. (2002). Can vitamin D supplementation in infancy prevent type 1 diabetes? Nutrition Reviews [online], 60 (4), pp. 118-21. Available from: https://www.ncbi.nlm.nih.gov/pubmed/12002683 [Accessed 05.01.2017].
Holick, M. (2005). Vitamin D: important for prevention of osteoporosis, cardiovascular heart disease, type 1 diabetes, autoimmune diseases, and some cancers. Southern Medical Journal [online], 98 (10), pp. 1024-7. Available from: https://www.ncbi.nlm.nih.gov/pubmed/16295817 [Accessed 05.01.2017].
Hyppönen, E. (2010). Vitamin D and increasing incidence of type 1 diabetes-evidence for an association? Diabetes Obesity and Metabolism [online], 12 (9), pp. 737-43. Available from: https://www.ncbi.nlm.nih.gov/pubmed/20649624 [Accessed 05.01.2017].
Karagun, B., Temiz, F., Ozer, G., et al. (2012). Chromium levels in healthy and newly diagnosed type 1 diabetic children. Pediatrics International [online], 54 (6), pp. 780-5. Available from: https://www.ncbi.nlm.nih.gov/pubmed/22783884 [Accessed 28.12.2016].
Karumuthil-Melethil, S., Gudi, R., Johnson, B., et al. (2014). Fungal β-glucan, a Dectin-1 ligand, promotes protection from type 1 diabetes by inducing regulatory innate immune response. Journal of Immunology [online], 193 (7), pp. 3308-21. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4170060/ [Accessed 27.12.2016].
Kida, K., Inoue, T., Kaino, Y., et al. (1992). An immunopotentiator of beta-1,6;1,3 D-glucan prevents diabetes and insulitis in BB rats. Diabetes Research and Clinical Practice [online], 17 (2), pp .75-9. Available from: https://www.ncbi.nlm.nih.gov/pubmed/1425150 [Accessed 28.12.2016].
Kodentsova, V., Vrzhesinskaia, O., Sokol’nikov, A., et al. (1994). Vitamin metabolism in children with insulin-dependent diabetes mellitus. Effect of length of illness, severity, and degree of disruption of substance metabolism. Voprosy Meditsinskoi Khimii [online], 40 (4), pp. 33-8. Available from: https://www.ncbi.nlm.nih.gov/pubmed/7975378 [Accessed 04.01.2017].
Lin, C., Huang, Y. (2015). Chromium, zinc and magnesium status in type 1 diabetes. Current Opinion in Clinical Nutrition and Metabolic Care [online], 18 (6), pp. 588-92. Available from: https://www.ncbi.nlm.nih.gov/pubmed/26406393 [Accessed 28.12.2016].
Luong, K., Nguyen, L., Nguyen, D. (2005). The role of vitamin D in protecting type 1 diabetes mellitus. Diabetes Metabolism Research and Reviews [online], 21 (4), pp. 338-46. Available from: https://www.ncbi.nlm.nih.gov/pubmed/15852446 [Accessed 05.01.2017].
MacKenzie, K., Wiltshire, E., Gent, R., et al. (2006). Folate and vitamin B6 rapidly normalize endothelial dysfunction in children with type 1 diabetes mellitus. Pediatrics [online], 118 (1), pp. 242-53. Available from: https://www.ncbi.nlm.nih.gov/pubmed/16818571 [Accessed 29.12.2016].
Massé, P., Boudreau, J., Tranchant, C., et al. (2012). Type 1 diabetes impairs vitamin B(6) metabolism at an early stage of women’s adulthood. Applied Physiology Nutrition and Metabolism [online], 37 (1), pp. 167-75. Available from: https://www.ncbi.nlm.nih.gov/pubmed/22288928 [Accessed 29.12.2016].
Mathieu, C. (2015). Vitamin D and diabetes: Where do we stand? Diabetes Research and Clinical Practice [online], 108 (2), pp. 201-9. Available from: https://www.ncbi.nlm.nih.gov/pubmed/25700626 [Accessed 04.01.2017].
Mathieu, C., Badenhoop, K. (2005a). Vitamin D and type 1 diabetes mellitus: state of the art. Trends in Endocrinology and Metabolism [online], 16 (6), pp. 261-6. Available from: https://www.ncbi.nlm.nih.gov/pubmed/15996876 [Accessed 05.01.2017].
Mathieu, C., Gysemans, C., Giulietti, A., et al. (2005b). Vitamin D and diabetes. Diabetologia [online], 48 (7), pp. 1247-57. Available from: https://www.ncbi.nlm.nih.gov/pubmed/15971062 [Accessed 05.01.2017).
Murunga, A., Miruka, D., Driver, C., et al. (2016). Grapefruit Derived Flavonoid Naringin Improves Ketoacidosis and Lipid Peroxidation in Type 1 Diabetes Rat Model. PLoS One [online], 11 (4), pp. e0153241. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4830547/ [Accessed 06.01.2017].
Paganus, A., Mäenpää, J., Akerblom, H., et al. (1987). Beneficial effects of palatable guar and guar plus fructose diets in diabetic children. Acta Paediatrica Scandinavica [online], 76 (1), pp. 76-81. Available from: https://www.ncbi.nlm.nih.gov/pubmed/3551494 [Accessed 27.12.2016].
Perros, P., Singh, R., Ludlam, C., et al. (2000). Prevalence of pernicious anaemia in patients with Type 1 diabetes mellitus and autoimmune thyroid disease. Diabetic Medicine [online], 17 (10), pp. 749-51. Available from: https://www.ncbi.nlm.nih.gov/pubmed/11110510 [Accessed 28.12.2016].
Rami, B., Zidek, T., Schober, E. (2001). Influence of a beta-glucan-enriched bedtime snack on nocturnal blood glucose levels in diabetic children. Journal of Pediatric Gastroenterology and Nutrition [online], 32 (1), pp. 34-6. Available from: https://www.ncbi.nlm.nih.gov/pubmed/11176321 [Accessed 27.12.2016].
Rubí, B. (2012). Pyridoxal 5′-phosphate (PLP) deficiency might contribute to the onset of type I diabetes. Medical Hypotheses [online], 78 (1), pp. 179-82. https://www.ncbi.nlm.nih.gov/pubmed/22088923 [Accessed 29.12.2016].
Thnc, O., Cetinkaya, S., Kizilgün, M., et al. (2011). Vitamin D status and insulin requirements in children and adolescent with type 1 diabetes. Journal of Pediatric Endocrinology and Metabolism [online], 24 (11-12), pp. 1037-41. Available from: https://www.ncbi.nlm.nih.gov/pubmed/22308861 [Accessed 05.01.2017].
Vaaler, S., Hanssen, K., Dahl-Jørgensen, K., et al. (1986). Diabetic control is improved by guar gum and wheat bran supplementation. Diabetic Medicine [online], 3 (3), pp. 230-3. Available from: https://www.ncbi.nlm.nih.gov/pubmed/3030619 [Accessed 27.12.2016].
Vuorinen-Markkola, H., Sinisalo, M., Koivisto, V. (1992). Guar gum in insulin-dependent diabetes: effects on glycemic control and serum lipoproteins. American Journal of Clinical Nutrition [online], 56 (6), pp. 1056-60. Available from: https://www.ncbi.nlm.nih.gov/pubmed/1442657 [Accessed 27.12.2016].
Wolden-Kirk, H., Overbergh, L., Christesen, H., et al. (2011). Vitamin D and diabetes: its importance for beta cell and immune function. Molecular and Cellular Endocrinology [online], 347 (1-2), pp. 106-20. Available from: https://www.ncbi.nlm.nih.gov/pubmed/21889571 [Accessed 05.01.2017].
Xulu, S., Oroma Owira, P. (2012). Naringin ameliorates atherogenic dyslipidemia but not hyperglycemia in rats with type 1 diabetes. Journal of Cardiovascular Pharmacology [online], 59 (2), pp. 133-41. Available from: https://www.ncbi.nlm.nih.gov/pubmed/21964158 [Accessed 06.01.2017].
Zipitis, C., Akobeng, A. (2008). Vitamin D supplementation in early childhood and risk of type 1 diabetes: a systematic review and meta-analysis. Archives of Disease in Childhood [online], 93 (6), pp. 512-7. Available from: http://adc.bmj.com/content/93/6/512.full.pdf+html [Accessed 05.01.2017].

Footnote

This research was sponsored by Must Cure Obesity CO. (Florida 2000)

Don Karl Juravin is the inventor

https://gastric.care/research/effects-of-gastric-bypass-alternative-regimen-on-type-1-diabetes/

news@Juravin.com
PO Box 560510
Montverde, FL 32756
8507338850


Credit Secrets Bible

Get Paid for
Doing Surveys





The Online Business Bureau -- 21441 Pacific Boulevard -- Suite 200 -- Sterling, VA 20166 -- 202-558-5282
News Releases |  News Articles |  Financial Calculators |  Contact Us |  Privacy Policy | Terms of Use & Legal Notice
Copyright © 2018 Online Business Bureau, L. C.. All Rights Reserved.
We are not affiliated with the Council of Better Business Bureaus, Inc.